symplectic module - definição. O que é symplectic module. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é symplectic module - definição

Symplectic transformation; Symplectic operator

Symplectic geometry         
BRANCH OF DIFFERENTIAL GEOMETRY AND DIFFERENTIAL TOPOLOGY
Symplectic Geometry; Symplectic structure; Symplectic topology
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry was founded by the Russian mathematician Vladimir Arnold and has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.
Module (mathematics)         
GENERALIZATION OF VECTOR SPACE, WITH SCALARS IN A RING INSTEAD OF A FIELD
Module (algebra); Submodule; Module theory; Submodules; R-module; Module over a ring; Left module; Module Theory; Unital module; Module (ring theory); Right module; Left-module; Module mathematics; Ring action; Z-module; ℤ-module
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.
Dualizing module         
In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality.

Wikipédia

Symplectic matrix

In mathematics, a symplectic matrix is a 2 n × 2 n {\displaystyle 2n\times 2n} matrix M {\displaystyle M} with real entries that satisfies the condition

where M T {\displaystyle M^{\text{T}}} denotes the transpose of M {\displaystyle M} and Ω {\displaystyle \Omega } is a fixed 2 n × 2 n {\displaystyle 2n\times 2n} nonsingular, skew-symmetric matrix. This definition can be extended to 2 n × 2 n {\displaystyle 2n\times 2n} matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.

Typically Ω {\displaystyle \Omega } is chosen to be the block matrix

where I n {\displaystyle I_{n}} is the n × n {\displaystyle n\times n} identity matrix. The matrix Ω {\displaystyle \Omega } has determinant + 1 {\displaystyle +1} and its inverse is Ω 1 = Ω T = Ω {\displaystyle \Omega ^{-1}=\Omega ^{\text{T}}=-\Omega } .